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Localization in Highly Anisotropic Systems
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The localization behavior of the Anderson model with anisotropic hopping integial weakly
coupled planes and weakly coupled chains is investigated both numerically with the transfer-matrix
method and analytically within the self-consistent theory of localization. It is found that the mobility
edge is independent of the propagating direction. However, the correlation (localization) length in
the extended (localized) side of the transition can be very different for the two directions. The
critical disorderW. is found to vary froms!/* for weakly coupled planes to'/? for weakly coupled
chains. [S0031-9007(96)00089-0]

PACS numbers: 72.15.Rn, 71.30.+h, 74.25.Fy

The problem of Anderson localization in anisotropic zation length to the width of the bar is independent of
systems has attracted considerable attention [1-5] in réhe anisotropy. This underlies the conformal invariance
cent years, largely due to the fact that the highsu- property at the Anderson transition. For systems with ex-
perconductors are highly anisotropic. Transport in the¢remely weak plane coupling, the critical disordé&t. is
normal state is metallic in the-b plane but appears semi- found to vary with anisotropy as ¢'/#, in good agree-
conductorlike in thec axis [6]. The nature of the-axis  ment with a self-consistent theory of localization. How-
transport in highf, materials is still controversial and ever, the correlation lengths in the extended regime, as
its understanding may have important consequences favell as the localization lengths in the localized regime,
the theories of the normal and the superconducting statediffer tremendously in different directions. As we will
This paradoxical property has prompted the proposal [7§liscuss later, this difference of the correlation lengths in
that a high?,. material in the normal state is actually an the propagating directions may explain thexis trans-
insulator, appearing metallic only because the inelastiport of the high?, materials. The localization behavior
length in the plane is less than the localization length. lof weakly coupled disordered chains, which simulate the
has also been argued [2,6] that a negailpe/dT inthec  1D-to-3D behavior, is also studied. The critical disorder
direction alone may signify anisotropic localization, with W, is found to behave ad/?.

a metal-insulator transition depending on the propagating We study the following Hamiltonian for an anisotropic
direction, in direct contradiction to the predictions of the 3D disordered model:
scaling theory of localization [8]. A recent diagrammatic

calculation [1] lent support to such a claim. Previous H = Zénm <n| + Z,nm|n < ml, (1)
diagrammatic analysis [9], however, led to the conclusion n

that the scaling property in anisotropic systems remain§here the sitegn} form a regular cubic lattice. The

the Same as that of the isotropic systems with a Slmplﬂopping integrals are nonzero between nearest-neighbor
substitution of the conductance by its geometric mean

Gi h bat ¢ all th ; K sites only and depend on directions, in genefak ¢, #
Given the perturbative nature of all the previous wor 't,. We normalize all energies by the largest hopping
it is important to carefully study the localization behavior ;

f disordered ani . ith reliabl . l?tegral. For systems with weak plane coupling, the
of disordered anisotropic systems with reliable numerica opping integrals are given Hy, 1,7}. As a convention,

techniques and to determine whether the scaling theory {8, 1ave assigned the direction with the large and small

valid for high anisotropic systems [8-10]. ({wpping integral as the parallg|) and the perpendicular

In the.pre_sent work,_ we have syste_mancglly stu_dle 1) directions, respectively. Disorder is introduced by
the localization properties of a three-dimensional d'sor'randomly choosing site energies within [—W /2, W /2].
dereq anisotropic_system de_scrlbed .by a tlght_-blndln_g The metal or insulating nature of the Anderson Hamil-
Hamiltonian with random on-site energies and anisotropig, .-, Eq. (1), can be determined by investigating the
hopping integrals. We calculate numerically both the congeajing properties of either the conductance or the lo-
ductance and the localization length O.f Su‘.:h. Systems Wity jization length of finite systems calculated from the
the transfer-matrix method [8]. By doing finite-size scal-

. . o ) transfer-matrix techniques [8,11]. The conducta6cef
Ing anaIyS|s on suff_lqlently large systems, We'f.md theanM X M X M cube is calculated from the multichan-
metal-lnsu_lator tre}nsmlon occurs at the same cnyca! dIS-nel Landauer formula [12]
order W, in all directions. Remarkably, at criticality,

the geometric mean of the ratio of the finite-size locali- GM) = (*/n)TH(T*T), (2

n,m
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where T is the transmission matrix. For the localiza- tance in the two directions at= 0.1 is approximately

tion length calculation, one considers a bar of lenyth g = 107°g/l. This is a much stronger variation than the

and cross sectiodd X M. One determines the largest g = r2gll predicted by the diagrammatic analysis [9] of

localization length Ay as N — « from the smallest the anisotropic model. This may be an indication of the

Lyapunov coefficient of the product of the random trans-existence of high order corrections to the conductivity that

fer matrices. From a plot ohy /M (or G) vs M, one is not simply proportional to the bare conductivity. This

can determine the localization properties of the systenmpoint needs further study.

For localized statesW > W,) the ratio Ay /M (or G) In order to extrapolate to infinite system sidé — «),

is expected to fall with increasindf, while for extended it is necessary to investigate the scaling behavior of

states(W < W,.) Ay /M (or G) should rise instead. At Ay /M. In the center of the bandE = 0) and close

the mobility edge trajectoryW = W,.), Ay /M (or G) is  enough to the transition point, it turned out to be possible

independent oM and this behavior defines the Andersonto establish a scaling function for both propagation

transition point and the critical disord®& = W,. Inour directions within the accuracy of our numerical results.

calculations, we have used systems with= 5-17 and  The scaling functionf(x) behaves ad/x in the x —

N was at least 5000. For the conductance calculatighs, 0 limit for extended states [while for localized states

was up to 22. Because of the non-self-averaging naturg(x) ~ x]. Forx — o, f(x) approaches a constant value

of finite-size systems, an average over many random corthat depends on the propagating direction. Fet 0.1,

figurations (up to 500 for th&/ = 20 case) must be taken we obtainedA!l = 1.2 and A> = 0.12. This suggests

to suppress the large fluctuations. that A- = rAll for general. We have, indeed, checked
In Fig. 1, we present our numerical results for the di-that this formula is correct for any.  Another important

mensionless conductange= G/(e?/h) and the scaled relation we were able to obtain is the geometric mean

localization lengthAy /M vs M at E = 0 for the case of the different critical valuesi, /M in the different

of weakly coupled planes with coupling constant 0.1,  directions is independent of the anisotrapyWe derived

for both the perpendicular (lower panels) and parallel (up- (ATAY A = 0.6 3)

per panels) directions. These results strongly suggest that ¢*tette -

for sufficiently largeM the critical disorded defined by an In the case of weakly coupled planes, Eq. (2) becomes

M independeng and A, /M converges to the same value, [(A2AL]'/3 = 0.6. This relation may have important

W. = 8.4, for both propagating directions. Notice that if consequences for the existence of conformal invariance

only sizesM = 11 were used, which are appropriate in at the critical point of the Anderson localization prob-

the isotropic case, one would then have erroneously conem [13,14].

cluded thatw!! > W.. Another important point is that  In Fig. 2, we plot the localization lengtiL. and

the value ofAy /M atW = W,, calledA,, is differentin  the correlation length¢ as a function of W for E =

the two propagating directions. We find that = tAll 0 and ¢ = 0.1 for the parallel and the perpendicular

for all the t's we have examined. The critical conduc- directions. BothL. and ¢ diverge at the critical disorder

W.. However, both¢ and L. differ substantially for
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FIG. 2. Localization lengthL, or correlation lengthé, ob-
FIG. 1. The conductance (a),(b) andaA, /M (c),(d) plotted tained by finite size scaling, as a function of disordgérfor
as a function ofM for E = 0, + = 0.1, and various values of E = 0 and¢ = 0.1, for the parallel and perpendicular propa-
disorderw, for both propagating directions. The mobility edge gating directions. Notice that foW < W, = 8.4, &+ > ¢l
is at W, = 8.4 for both propagating directions. while for w > W, Ll > L}.
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the different propagating directions. In particular, in ' T
the extended regime wher® < W, ¢+ > ¢l For 1o | cek Plane Covpling
example, atW = 5,&+ = 100, and ¢l = 1.5, in units

of the lattice constant, which has been taken to be

1. In the localized regime wher@ > W, Ll > L', We |

For example, atW = 10,L!l = 55, and L} = 5. Our ¢ O Transfer Matrix |

numerical results approximately follow the theoretical —Fit to 15.4 t"*

prediction [9] £l = 2¢+ andL} = ¢L!l. However, the 110_3' T o0

exponents are expected to be the same and this has been t

confirmed from our calculations. We find that: = FIG. 3. The critical disordeiV, for obtaining localized states

13 = 0.1 and »! = 1.3 = 0.3, in agreement with each atE = 0 vs the anisotropy.
other and withy = 1.3 = 0.1 for the isotropic system
within the numerical accuracy.

The difference betweeg! and ¢+ is very important  to what one would expect based on reasonable heuristic
and can possibly explain the normal state transporjrgument [17] and also predicted previously by more
properties [6] of the higl:, materials. The correlation el|aborate theories [1,4] which give a much weaker
length ¢ measures the strength of the fluctuations of thQ:IependenceWC ~1/ Mnt]. Thet dependence is also
wave functions in the extended regime. For length scalegijfferent from the results obtained for the weakly coupled
larger thané, the wave function looks uniform, while for chains [18], which giveW. ~ /2. To understand the
length scales smaller thah the wave function has strong ,1/4 dependence ofW,, we examine the localization
fluctuations. The relevant length scale is the inelastigransition starting from the results of the diagrammatic
mean free patfi, which behaves a~7, with probably  analysis [9]. The maximally crossed diagrams produced
p = 1/2. Whenl;, < £, a phenomenon called incipient 5 correction [4] to the zero-temperature configurationally
localization takes place and conductivity is controlled byayerage conductivityr;y (i = x,y,z) of the form given
lin. A convenient interpolation formula [15] valid in the iy Eq. (2.3a) of Ref.[4]. An equivalent criterion in
conducting regime is given by the tight-binding representation for the mobility edge is

Troc = (€2/R)(a/é + b/lin), (4) given by Eq. (2.5) _of Ref. [4]. For th_e anisqtropic case
i we made the choice that the effective lattice constant
wherea and b are constants of order unity [16]. For , is proportional to the anisotropic mean free path
high enough temperatures the conductivity is given byl,- - (<v£>)1/27' — [<v><vz/v>]1/z7_ ie.. we assume that
the regular metallic behavior, whetgy, = wy7/4m and i isotropic. Sinceo;o/a? is independent ofi, the

H -1 . . . . . . g . .
the mean free timer ~ 77 . Becauseopn and 0. |ocalization criterion is satisfied simultaneously in all the
describe independent physical processes, we can add thfections and can be written as

corresponding resistivities. Therefoie = pioc + ppn
wherep = 1/o. The experimental behavior of the high- mhdoi _ 1 f J7 1
T. materials can be understood if we assume that the high- 2e2a} (2m)3 i 3.2 - 2 cosy)
T. oxides, instead of being insulators [7], are disordered _ s (o
. . . ; : i = Gip(E =6), (5)
anisotropic metals with a large anisotropic correlation .
length. At low T, the resistivity is dominated by .. where() = H,3=1al- and G3p(E = 6) = 0.505462 is the
Once l;, becomes shorter thad in the perpendicular 3D Green’s function of the isotropic system at the band
direction ¢ direction), £+, Eq. (4) suggests that there edge [19]. Notice the same equation applies to the
is a sharp downturn in the perpendicular resistivity assotropic case except now both the conductivity and the
the temperature increases. This trend will eventuallymean free path enter as geometric means.
stop at someT' when the regular resistivity begins to  In the limit of weak couplingr — 0, Eq. (5) yields
dominate. Thenp* will start increasing linearly with 7 ~ ¢~'/2 for weakly coupled planes and ~ ¢~! for
T, as in the regular metallic behavior. In the parallelweakly coupled chains [20], and therefd#e (taking into
direction, ¢!l is always smaller than the inelastic length account that ~ W~2) is proportional tar'/# ands'/2, re-
and the transport in the plane remains metallic. The abovspectively, in agreement with the transfer-matrix method
analysis neglects corrections and dynamic disorder thakesults. We have systematically calculated [BQ] vs ¢,
could also substantially affect the transport properties [2]for generalt, within the coherent potential approximation
The dependence oW, on the anisotropyr for the (CPA), by using Eg. (5). There is quantitative agreement
weak plane coupling has been also numerically calculatedetween the CPA and the transfer-matrix results. We feel
by the transfer-matrix technique. The numerical valueghe choice of the effective lattice constant being pro-
of W. can be fitted well with a single power law portional to an anisotropic mean free pdths the proper
dependencdV,. = 15.4t'/2, for t < 0.8. This is clearly one and the good agreement with our numerical results
seen in Fig. 3. This dependence is in marked contradtrther supports this.
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